Please share

A long-running investigation of exceptional children reveals what it takes to produce the scientists who will lead the twenty-first century.

  • Tom Clynes
07 September 2016

On a summer day in 1968, professor Julian Stanley met a brilliant but bored 12-year-old named Joseph Bates. The Baltimore student was so far ahead of his classmates in mathematics that his parents had arranged for him to take a computer-science course at Johns Hopkins University, where Stanley taught. Even that wasn’t enough. Having leapfrogged ahead of the adults in the class, the child kept himself busy by teaching the FORTRAN programming language to graduate students.
Unsure of what to do with Bates, his computer instructor introduced him to Stanley, a researcher well known for his work in psychometrics — the study of cognitive performance. To discover more about the young prodigy’s talent, Stanley gave Bates a battery of tests that included the SAT college-admissions exam, normally taken by university-bound 16- to 18-year-olds in the United States.
Bates’s score was well above the threshold for admission to Johns Hopkins, and prompted Stanley to search for a local high school that would let the child take advanced mathematics and science classes. When that plan failed, Stanley convinced a dean at Johns Hopkins to let Bates, then 13, enrol as an undergraduate.
Stanley would affectionately refer to Bates as “student zero” of his Study of Mathematically Precocious Youth (SMPY), which would transform how gifted children are identified and supported by the US education system. As the longest-running current longitudinal survey of intellectually talented children, SMPY has for 45 years tracked the careers and accomplishments of some 5,000 individuals, many of whom have gone on to become high-achieving scientists. The study’s ever-growing data set has generated more than 400 papers and several books, and provided key insights into how to spot and develop talent in science, technology, engineering, mathematics (STEM) and beyond.
“What Julian wanted to know was, how do you find the kids with the highest potential for excellence in what we now call STEM, and how do you boost the chance that they’ll reach that potential,” says Camilla Benbow, a protégé of Stanley’s who is now dean of education and human development at Vanderbilt University in Nashville, Tennessee. But Stanley wasn’t interested in just studying bright children; he wanted to nurture their intellect and enhance the odds that they would change the world. His motto, he told his graduate students, was “no more dry bones methodology”.

With the first SMPY recruits now at the peak of their careers1, what has become clear is how much the precociously gifted outweigh the rest of society in their influence. Many of the innovators who are advancing science, technology and culture are those whose unique cognitive abilities were identified and supported in their early years through enrichment programmes such as Johns Hopkins University’s Center for Talented Youth — which Stanley began in the 1980s as an adjunct to SMPY. At the start, both the study and the centre were open to young adolescents who scored in the top 1% on university entrance exams. Pioneering mathematicians Terence Tao and Lenhard Ng were one-percenters, as were Facebook’s Mark Zuckerberg, Google co-founder Sergey Brin and musician Stefani Germanotta (Lady Gaga), who all passed through the Hopkins centre.
“Whether we like it or not, these people really do control our society,” says Jonathan Wai, a psychologist at the Duke University Talent Identification Program in Durham, North Carolina, which collaborates with the Hopkins centre. Wai combined data from 11 prospective and retrospective longitudinal studies2, including SMPY, to demonstrate the correlation between early cognitive ability and adult achievement. “The kids who test in the top 1% tend to become our eminent scientists and academics, our Fortune 500 CEOs and federal judges, senators and billionaires,” he says.

Such results contradict long-established ideas suggesting that expert performance is built mainly through practice — that anyone can get to the top with enough focused effort of the right kind. SMPY, by contrast, suggests that early cognitive ability has more effect on achievement than either deliberate practice or environmental factors such as socio-economic status. The research emphasizes the importance of nurturing precocious children, at a time when the prevailing focus in the United States and other countries is on improving the performance of struggling students (see ‘Nurturing a talented child’). At the same time, the work to identify and support academically talented students has raised troubling questions about the risks of labelling children, and the shortfalls of talent searches and standardized tests as a means of identifying high-potential students, especially in poor and rural districts.
“With so much emphasis on predicting who will rise to the top, we run the risk of selling short the many kids who are missed by these tests,” says Dona Matthews, a developmental psychologist in Toronto, Canada, who co-founded the Center for Gifted Studies and Education at Hunter College in New York City. “For those children who are tested, it does them no favours to call them ‘gifted’ or ‘ungifted’. Either way, it can really undermine a child’s motivation to learn.”

Start of a study
On a muggy August day, Benbow and her husband, psychologist David Lubinski, describe the origins of SMPY as they walk across the quadrangle at Vanderbilt University. Benbow was a graduate student at Johns Hopkins when she met Stanley in a class he taught in 1976. Benbow and Lubinski, who have co-directed the study since Stanley’s retirement, brought it to Vanderbilt in 1998.
“In a sense, that brought Julian’s research full circle, since this is where he started his career as a professor,” Benbow says as she nears the university’s psychology laboratory, the first US building dedicated to the study of the field. Built in 1915, it houses a small collection of antique calculators — the tools of quantitative psychology in the early 1950s, when Stanley began his academic work in psychometrics and statistics.
His interest in developing scientific talent had been piqued by one of the most famous longitudinal studies in psychology, Lewis Terman’s Genetic Studies of Genius3, 4. Beginning in 1921, Terman selected teenage subjects on the basis of high IQ scores, then tracked and encouraged their careers. But to Terman’s chagrin, his cohort produced only a few esteemed scientists. Among those rejected because their IQ of 129 was too low to make the cut was William Shockley, the Nobel-prizewinning co-inventor of the transistor. Physicist Luis Alvarez, another Nobel winner, was also rejected.
Stanley suspected that Terman wouldn’t have missed Shockley and Alvarez if he’d had a reliable way to test them specifically on quantitative reasoning ability. So Stanley decided to try the Scholastic Aptitude Test (now simply the SAT). Although the test is intended for older students, Stanley hypothesized that it would be well suited to measuring the analytical reasoning abilities of elite younger students.

Nurturing a talented child
“Setting out to raise a genius is the last thing we’d advise any parent to do,” says Camilla Benbow, dean of education and human development at Vanderbilt University in Nashville, Tennessee. That goal, she says, “can lead to all sorts of social and emotional problems”.
Benbow and other talent-development researchers offer the following tips to encourage both achievement and happiness for smart children.
  • Expose children to diverse experiences.
  • When a child exhibits strong interests or talents, provide opportunities to develop them.
  • Support both intellectual and emotional needs.
  • Help children to develop a ‘growth mindset’ by praising effort, not ability.
  • Encourage children to take intellectual risks and to be open to failures that help them learn.
  • Beware of labels: being identified as gifted can be an emotional burden.
  • Work with teachers to meet your child’s needs. Smart students often need more-challenging material, extra support or the freedom to learn at their own pace.
  • Have your child’s abilities tested. This can support a parent’s arguments for more-advanced work, and can reveal issues such as dyslexia, attention-deficit/hyperactivity disorder, or social and emotional challenges.